Saturday 11 November 2017

Movendo média modelo tempo série


Uma nota de pé de página em Pankratz (1983). Na página 48, diz: A média móvel da etiqueta é tecnicamente incorreta, pois os coeficientes de MA podem ser negativos e não somar à unidade. Este rótulo é usado por convenção. Box e Jenkins (1976) também dizem algo semelhante. Na página 10: A média móvel de nome é um pouco enganosa porque os pesos 1, - theta, - theta, ldots, - theta, que multiplicam o como, não precisam de unidade total nem precisa que seja positivo. No entanto, esta nomenclatura é de uso comum, e, portanto, utilizá-lo. Eu espero que isso ajude. Se você olhar para um processo de MA zero-média: Xt varepsilont theta1 varepsilon cdots thetaq varepsilon, então você poderia considerar o lado direito como semelhante a uma média móvel ponderada dos termos varepsilon, mas onde os pesos não somam a 1. Note que Cada valor de yt pode ser considerado como uma média móvel ponderada dos últimos erros de previsão. Explicações semelhantes do termo podem ser encontradas em muitos outros lugares. (Apesar da popularidade desta explicação, eu não sei ao certo que esta é a origem do termo, no entanto, por exemplo, talvez existisse originalmente alguma conexão entre o modelo e a suavização da média móvel). Note que Graeme Walsh aponta em Comentários acima que isso pode ter se originado com Slutsky (1927) A soma de causas aleatórias como uma fonte de processos cíclicos 1 Hyndman, RJ E Athanasopoulos, G. (2017) Previsão: princípios e prática. Seção 84. otextsfpp84. Acessado em 22 de setembro de 2017. Há uma série de abordagens para a modelagem de séries temporais. Descrevemos algumas das abordagens mais comuns abaixo. Tendência, Decomposições Sazonais, Residuais Uma abordagem consiste em decompor as séries temporais em uma componente tendencial, sazonal e residual. A suavização exponencial tripla é um exemplo desta abordagem. Outro exemplo, chamado loess sazonal, é baseado em mínimos quadrados ponderados localmente e é discutido por Cleveland (1993). Não discutimos o loess sazonal neste manual. Métodos baseados em freqüência Outra abordagem, comumente utilizada em aplicações científicas e de engenharia, é analisar as séries no domínio da freqüência. Um exemplo desta abordagem ao modelar um conjunto de dados de tipo sinusoidal é mostrado no estudo de caso de deflexão de feixe. O gráfico espectral é a principal ferramenta para a análise de freqüência de séries temporais. Modelos Autoregressivos (AR) Uma abordagem comum para modelar séries temporais univariadas é o modelo autorregressivo (AR): Xt delta phi1 X phi2 X cdots phip X Em, onde (Xt) é a série temporal, (At) é ruído branco e delta Esquerda (1 - sum p phii direita) mu. Com (mu) denotando a média do processo. Um modelo autorregressivo é simplesmente uma regressão linear do valor atual da série contra um ou mais valores anteriores da série. O valor de (p) é chamado a ordem do modelo AR. Os modelos AR podem ser analisados ​​com um de vários métodos, incluindo técnicas de mínimos quadrados lineares padrão. Eles também têm uma interpretação direta. Modelos de média móvel (MA) Outra abordagem comum para a modelagem de modelos de séries temporais univariadas é o modelo de média móvel (MA): Xt mu At - theta1 A - theta2 A - cdots - thetaq A, onde (Xt) é a série temporal ) É a média da série, (A) são termos de ruído branco, e (theta1,, ldots,, thetaq) são os parâmetros do modelo. O valor de (q) é chamado a ordem do modelo MA. Isto é, um modelo de média móvel é conceitualmente uma regressão linear do valor actual da série contra o ruído branco ou choques aleatórios de um ou mais valores anteriores da série. Os choques aleatórios em cada ponto são assumidos como provenientes da mesma distribuição, normalmente uma distribuição normal, com localização em zero e escala constante. A distinção neste modelo é que estes choques aleatórios são propogated aos valores futuros das séries de tempo. Ajustar as estimativas MA é mais complicado do que com modelos AR, porque os termos de erro não são observáveis. Isto significa que procedimentos de montagem não-linear iterativos precisam ser usados ​​em vez de mínimos quadrados lineares. Os modelos MA também têm uma interpretação menos óbvia do que os modelos AR. Às vezes, o ACF e PACF sugerem que um modelo de MA seria uma melhor escolha de modelo e às vezes tanto AR e MA termos devem ser utilizados no mesmo modelo (ver Secção 6.4.4.5). Observe, entretanto, que os termos de erro após o ajuste do modelo devem ser independentes e seguir os pressupostos padrão para um processo univariável. Box e Jenkins popularizaram uma abordagem que combina a média móvel e as abordagens autorregressivas no livro Análise de Séries Temporais: Previsão e Controle (Box, Jenkins e Reinsel, 1994). Embora as abordagens da média autorregressiva e da média móvel fossem já conhecidas (e foram originalmente investigadas por Yule), a contribuição de Box e Jenkins foi no desenvolvimento de uma metodologia sistemática para identificar e estimar modelos que poderiam incorporar ambas as abordagens. Isso torna Box-Jenkins modelos uma classe poderosa de modelos. As próximas seções discutem esses modelos em detalhes.8.4 Movendo modelos médios Em vez de usar valores passados ​​da variável de previsão em uma regressão, um modelo de média móvel usa erros de previsão passados ​​em um modelo de regressão. Y e teta teta e dots theta e, onde et é ruído branco. Referimo-nos a isto como um modelo MA (q). Evidentemente, não observamos os valores de et, então não é realmente regressão no sentido usual. Observe que cada valor de yt pode ser considerado como uma média móvel ponderada dos últimos erros de previsão. No entanto, os modelos de média móvel não devem ser confundidos com o alisamento médio móvel discutido no Capítulo 6. Um modelo de média móvel é usado para prever valores futuros, enquanto o alisamento médio móvel é usado para estimar o ciclo tendencial de valores passados. Figura 8.6: Dois exemplos de dados de modelos de média móvel com diferentes parâmetros. Esquerda: MA (1) com y t 20e t 0,8e t-1. Direita: MA (2) com y t e t - e t-1 0,8e t-2. Em ambos os casos, e t é normalmente distribuído ruído branco com média zero e variância um. A Figura 8.6 mostra alguns dados de um modelo MA (1) e um modelo MA (2). Alterando os parâmetros theta1, dots, thetaq resulta em diferentes padrões de séries temporais. Tal como acontece com modelos autorregressivos, a variância do termo de erro e só irá alterar a escala da série, e não os padrões. É possível escrever qualquer modelo estacionário AR (p) como um modelo MA (infty). Por exemplo, usando a substituição repetida, podemos demonstrar isso para um modelo AR (1): begin yt amp phi1y et amp phi1 (phi1y e) amp phi12y phi1 e amp phi13y phi12e phi1 e et amptext end Provided -1 lt phi1 lt 1, o valor de phi1k será menor à medida que k for maior. Assim, eventualmente, obtemos yt et phi1 e phi12 e phi13 e cdots, um processo MA (infty). O resultado inverso é válido se impomos algumas restrições nos parâmetros MA. Em seguida, o modelo MA é chamado invertible. Ou seja, que podemos escrever qualquer processo de MA (q) invertível como um processo AR (infty). Os modelos Invertible não nos permitem simplesmente converter modelos MA para modelos AR. Eles também têm algumas propriedades matemáticas que torná-los mais fáceis de usar na prática. As restrições de invertibilidade são semelhantes às restrições de estacionaridade. Para um modelo MA (1): -1lttheta1lt1. Para um modelo MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1-theta2 lt 1. Condições mais complicadas mantêm-se para qge3. Novamente, R irá cuidar dessas restrições ao estimar os modelos.2.1 Modelos de média móvel (modelos MA) Modelos de séries temporais conhecidos como modelos ARIMA podem incluir termos autorregressivos ou termos de média móvel. Na Semana 1, aprendemos um termo autorregressivo em um modelo de séries temporais para a variável x t é um valor retardado de x t. Por exemplo, um termo autorregressivo de atraso 1 é x t-1 (multiplicado por um coeficiente). Esta lição define termos de média móvel. Um termo de média móvel em um modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Vamos (wt desviar N (0, sigma2w)), significando que os w t são identicamente, distribuídos independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel de ordem 1, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) , Denotado por MA (q) é (xt mu wt theta1w theta2w pontos thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele inverta os sinais algébricos de valores de coeficientes estimados e de termos (não-quadrados) nas fórmulas para ACFs e variâncias. Você precisa verificar seu software para verificar se sinais negativos ou positivos foram usados ​​para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades Teóricas de uma Série de Tempo com um Modelo MA (1) Observe que o único valor não nulo na ACF teórica é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma ACF de amostra com uma autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para os estudantes interessados, provas destas propriedades são um apêndice a este folheto. Exemplo 1 Suponha que um modelo MA (1) seja x t 10 w t .7 w t-1. Onde (wt overset N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por Um gráfico deste ACF segue. O gráfico apenas mostrado é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra normalmente não proporciona um padrão tão claro. Usando R, simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se um gráfico de séries temporais dos dados da amostra. Não podemos dizer muito desse enredo. A ACF de amostra para os dados simulados segue. Observamos que a amostra ACF não corresponde ao padrão teórico do MA subjacente (1), ou seja, que todas as autocorrelações para os atrasos de 1 serão 0 Uma amostra diferente teria uma ACF de amostra ligeiramente diferente mostrada abaixo, mas provavelmente teria as mesmas características gerais. Propriedades teóricas de uma série temporal com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Note que os únicos valores não nulos na ACF teórica são para os retornos 1 e 2. As autocorrelações para atrasos maiores são 0 . Assim, uma ACF de amostra com autocorrelações significativas nos intervalos 1 e 2, mas autocorrelações não significativas para atrasos maiores indica um possível modelo MA (2). Iid N (0,1). Os coeficientes são 1 0,5 e 2 0,3. Como este é um MA (2), o ACF teórico terá valores não nulos apenas nos intervalos 1 e 2. Os valores das duas autocorrelações não nulas são: Um gráfico do ACF teórico segue. Como quase sempre é o caso, dados de exemplo não vai se comportar tão perfeitamente como a teoria. Foram simulados n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Onde w t iid N (0,1). O gráfico de série de tempo dos dados segue. Como com o gráfico de série de tempo para os dados de amostra de MA (1), você não pode dizer muito dele. A ACF de amostra para os dados simulados segue. O padrão é típico para situações em que um modelo MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos intervalos 1 e 2, seguidos por valores não significativos para outros desfasamentos. Note que devido ao erro de amostragem, a ACF da amostra não corresponde exactamente ao padrão teórico. ACF para Modelos Gerais MA (q) Uma propriedade dos modelos MA (q) em geral é que existem autocorrelações não nulas para os primeiros q lags e autocorrelações 0 para todos os retornos gt q. Não-unicidade de conexão entre os valores de 1 e (rho1) no modelo MA (1). No modelo MA (1), para qualquer valor de 1. O recíproco 1 1 dá o mesmo valor para Como exemplo, use 0,5 para 1. E então use 1 (0,5) 2 para 1. Você obterá (rho1) 0,4 em ambas as instâncias. Para satisfazer uma restrição teórica chamada invertibilidade. Restringimos modelos MA (1) para ter valores com valor absoluto menor que 1. No exemplo dado, 1 0,5 será um valor de parâmetro permitido, enquanto 1 10,5 2 não. Invertibilidade de modelos MA Um modelo MA é dito ser inversível se for algébrica equivalente a um modelo de ordem infinita convergente. Por convergência, queremos dizer que os coeficientes de RA diminuem para 0 à medida que avançamos no tempo. Invertibilidade é uma restrição programada em séries temporais de software utilizado para estimar os coeficientes de modelos com MA termos. Não é algo que verificamos na análise de dados. Informações adicionais sobre a restrição de invertibilidade para modelos MA (1) são fornecidas no apêndice. Teoria Avançada Nota. Para um modelo MA (q) com um ACF especificado, existe apenas um modelo invertible. A condição necessária para a invertibilidade é que os coeficientes têm valores tais que a equação 1- 1 y-. - q y q 0 tem soluções para y que caem fora do círculo unitário. Código R para os Exemplos No Exemplo 1, traçamos o ACF teórico do modelo x t 10w t. 7w t-1. E depois simularam n 150 valores a partir deste modelo e traçaram a amostra de séries temporais ea amostra ACF para os dados simulados. Os comandos R utilizados para traçar o ACF teórico foram: acfma1ARMAacf (mac (0.7), lag. max10) 10 lags de ACF para MA (1) com theta1 0.7 lags0: 10 cria uma variável chamada lags que varia de 0 a 10. plot (Lags, acfma1, xlimc (1,10), ylabr, typeh, ACF principal para MA (1) com theta1 0,7) abline (h0) adiciona um eixo horizontal ao gráfico O primeiro comando determina o ACF e o armazena em um objeto Chamado acfma1 (nossa escolha de nome). O comando de plotagem (o terceiro comando) traça defasagens em relação aos valores de ACF para os retornos de 1 a 10. O parâmetro ylab marca o eixo y eo parâmetro principal coloca um título no gráfico. Para ver os valores numéricos do ACF basta usar o comando acfma1. A simulação e as parcelas foram feitas com os seguintes comandos. Xcarima. sim (n150, lista (mac (0.7))) Simula n 150 valores de MA (1) xxc10 adiciona 10 para fazer a média 10. Padrões de simulação significam 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF para dados de amostras simulados) No Exemplo 2, traçamos o ACF teórico do modelo xt 10 wt. 5 w t-1 .3 w t-2. E depois simularam n 150 valores a partir deste modelo e traçaram a amostra de séries temporais ea amostra ACF para os dados simulados. Os comandos R utilizados foram acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 parcela (lags, acfma2, xlimc (1,10), ylabr, tipoh, ACF principal para MA (2) com theta1 0,5, (X, typeb, main Simulado MA (2) Series) acf (x, xlimc (1,10), x2, MainACF para dados simulados de MA (2) Apêndice: Prova de Propriedades de MA (1) Para estudantes interessados, aqui estão as provas para propriedades teóricas do modelo MA (1). Quando h 1, a expressão anterior 1 w 2. Para qualquer h 2, a expressão anterior 0 (x) é a expressão anterior x (x) A razão é que, por definição de independência do wt. E (w k w j) 0 para qualquer k j. Além disso, porque w t tem média 0, E (w j w j) E (w j 2) w 2. Para uma série de tempo, aplique este resultado para obter o ACF fornecido acima. Um modelo MA reversível é aquele que pode ser escrito como um modelo de ordem infinita AR que converge de modo que os coeficientes AR convergem para 0 à medida que nos movemos infinitamente para trás no tempo. Bem demonstrar invertibilidade para o modelo MA (1). Em seguida, substitui-se a relação (2) para wt-1 na equação (1) (3) (zt wt theta1 (z-theta1w) wt theta1z-theta2w) No tempo t-2. A equação (2) torna-se Então substituimos a relação (4) para wt-2 na equação (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z-theta12z theta31w) Se continuássemos Infinitamente), obteríamos o modelo AR de ordem infinita (zt wt theta1 z - theta21z theta31z - theta41z pontos) Observe, no entanto, que se 1 1, os coeficientes multiplicando os desfasamentos de z aumentarão (infinitamente) Tempo. Para evitar isso, precisamos de 1 lt1. Esta é a condição para um modelo MA (1) invertible. Infinite Order MA model Na semana 3, bem ver que um modelo AR (1) pode ser convertido em um modelo de ordem infinita MA: (xt - mu wt phi1w phi21w pontos phik1 w dots sum phij1w) Esta soma de termos de ruído branco passado é conhecido Como a representação causal de um AR (1). Em outras palavras, x t é um tipo especial de MA com um número infinito de termos voltando no tempo. Isso é chamado de ordem infinita MA ou MA (). Uma ordem finita MA é uma ordem infinita AR e qualquer ordem finita AR é uma ordem infinita MA. Lembre-se na Semana 1, observamos que um requisito para um AR estacionário (1) é que 1 lt1. Vamos calcular o Var (x t) usando a representação causal. Esta última etapa usa um fato básico sobre séries geométricas que requer (phi1lt1) caso contrário, a série diverge. Navegação

No comments:

Post a Comment